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In recent years, the Evolutionary Structural Optimization (ESO) method has been
developed into an effective tool for engineering design. However, no attempts have been
made to incorporate random dynamic response constraints. The optimum design of
structures with dynamic response constraints is of great importance, particularly in the
aeronautical and automotive industries. This paper considers the extension and
modification of the ESO method to control the structural random dynamic responses. The
random dynamic theory is applied to build an expression of random dynamic response
constraints considering engineering requirements. Based on the modal truncation method of
eigenderivatives and some approximate process, a set of formulations for sensitivity
numbers of mean square random dynamic responses is derived. The algorithm is
implemented in optimization software. Several examples are provided to demonstrate the
validity and effectiveness of the proposed method.

© 2000 Academic Press

1. INTRODUCTION

Evolutionary Structural Optimization (ESO) has been developed based on the simple
concept that by systematically removing the unwanted material, the residual shape of the
structural evolves towards an optimum [1-3]. It has the advantages of clear concept and
easy mathematical operation compared to conventional analytical and numerical
optimization methods. Extensive research has been done on the ESO method for
various types of structures and the optimality constraints can be stress based,
stiffness/displacement based, frequency and bulking load based [3]. Its wide coverage
demonstrates that it is capable of solving all kinds of structural optimization problems in
practical engineering.

However, no attempts have been made to incorporate random dynamic response
constraints. Aircraft and aerospace vehicles are subjected to diverse sources of random
dynamic excitation during their service life. Such excitations include: (a) the ground loads
induced during taxi, takeoff and landing of an aircraft, or during the transportation of
a launch vehicle to the launch pad; (b) the gust excitation caused by atmospheric turbulence;
(c) the aerodynamic excitation due to boundary layer turbulence and fluctuating wake
forces; and (d) the excitation due to jet and rocket noise. Therefore, the design of aircraft
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structures must deal with the effect of structural dynamic responses on the aircraft structure.
Studies of dynamic response optimization have been mainly restricted to changing the size
of beams or the thickness of plates [4-7]. A bibliography on this topic can be found in
a survey by Grandhi [8]. More recent attempts on the simultaneous shape and topology
optimization of different design objectives including frequency/dynamic response have
achieved some success. The most notable advance is the homogenization method [9, 10],
the density function method [11, 12] and the continuum formulations [13, 14]. Also,
repeated frequency as encountered in dynamic problems especially in the above-mentioned
aircraft design has been investigated extensively [14-18].

This paper addresses the optimal topology design for structures with random dynamic
response constraints using he ESO method. An expression of mean square random dynamic
response constraints is first established based on the random vibration theory and
considering practical engineering requirements. Using the modal truncation method of
eigenderivatives, the sensitivity number of frequencies and mode shapes is formulated, and
then the sensitivity number of mean square random dynamic responses is derived. The
structural modification is based on the sensitivity number and the ESO procedure is
performed in such a way that the element with the smallest sensitivity number is removed.
The proposed procedure is tested on four examples in corporation with the finite element
analysis.

2. DESCRIPTION OF RANDOM VIBRATION

It is often required in the dynamic design that the mean square responses of some nodes
in a structure under the action of random excitations are within some prescribed limits. This
section is to formulate the expression of such a requirement based on the modal analysis
theory [6, 19].

The finite element equation for a structural dynamic problem can be written in the form

[MI{Y} + [CI{Y} + [KI{Y} = { (1)}, (1

where [M], [C] and [K] are the N x N mass, damping, and stiffness matrices of the
structure respectively. N is the number of degree of freedom. { f(¢)} is the random excitation
force vector, and {Y}, {Y} and { Y} are the displacement, velocity and acceleration vectors.

Assume that the system of equation (1) is of proportional damping; using the mode
superposition method, equation (1) can be uncoupled as

4 + 20,04 + ofqi =p; (i=1,2,3,...,n), (2a)
where ¢; is the modal co-ordinates defined by
q1
Y} =Co {oah o {01 72 = [01{g). (2b)
An

In the above equations, w; and {¢;} are the ith circular frequency and mode shape
normalized with respect to the mass matrix. {; is the mode damping ratio of ith mode. p;
represents the ith element of [@]"{ f(t)} and is called the ith generalized excitation. n is the
number of truncated modes.
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We consider here that the structure is under white-noise excitation. This can be an idea
simulation of practical wide band random excitation. Assume that the excitation force
vector is of zero mean values and auto-power spectral [D], i.e.,

E[{f(®)}]1=1{0},  EL{fO}{f(t+0}"]=2n[D]o(x). 3)
Therefore, it follows that
E[{p(0}1=1{0},  E[{p®)}{p(t+ }"] =2r[@]" [DI[P]6(2). 4

The statistics characteristics of dynamic response can be derived from the conditions given
by equations (1)-(4). Detailed derivation can be found in reference [6] and only main
conclusions are provided here for the sake of brevity. Light damping is assumed in
derivation, i.e., {; < 1. Define

[¢]'[D][®] = [d.], )
the correlation matrix of mode response is
[Ryres(0] = E[{q:(0} {g;(t + 1)}], (6)
where the element when © = 0 is given as
R0 =l o (s (7a)
where
s = Lo, + {0y T = Qi — & G = (an + D37 (7b)
O =(an+ei) ! by=n00,+ 100, ey =1,0, — 1,0 (7c)

and the diagonal elements can be found in a simple form as

d
R, = <2§ w) (7d)

which represents the autocorrelation function of the mode response.
Therefore, the covariance matrix of response Y is

[Byy,] = [Ryy(0)] = [®][R,,(0)][2]". @)

From equations (7a)-(8), the mean square response of the ith degree of freedom Y; can be
expressed as

n

0-12(;'2 Z Z (pircrsq)is (l= 1,2,...,N). (9)

r=1s=1

As a special case, if the generalized excitation on all degrees of freedom of the system are not
correlated with each other, i.e. [®]"[D][®] = diag(d;), equation (9) is reduced to

. (i=12..,N) (10)
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3. PROBLEM STATEMENTS

3.1. FORMULATION OF OPTIMIZATION PROBLEM

In aircraft design, a general goal is to minimize the structural weight while satisfying the
requirements of structural working characteristics. Therefore, the topology optimization
problem of a continuum structure under dynamics response constraints can be stated as
follows:

Minimize

W = i W, (11a)

Subject to
or, <(o3)" (=12 ...p) (11b)

where W is the total weight of the structure and w, is the weight of the eth element. (o7,)" is
the prescribed limit of o7 and p is the total number of dynamics response constraints.

3.2. SENSITIVITY NUMBER FOR DYNAMIC RESPONSES

Sensitivity analysis is used to identify the best locations for structural modifications to
reach a desired optimal design. For the formulation posed in equations (11a)-(11b),
sensitivity analysis is to determine the effect of an element removal on the mean square
response oy .

To perform the above sensitivity analysis involves the derivatives of eigenvalues and
eigenderivatives. At present, there are a number of efficient methods for calculating
eigenvector derivatives, such as the finite-difference method, the modal truncation method
[20], the modal method [21, 22], Nelson’s method [23] and an improved modal method
[24, 257]. Haftka and Adelman [26] and Baldwin and Hutton [27] surveyed developments
in this area. The eigenvector analysis in the paper is based on the modal truncation method.

Suppose that the jth element is removed from the current structure. The change of the
global stiffness and mass matrices due to such a removal is

[4K] = —[K'],[AM] = —[M'], (12)

where [K’] and [M’] are the element stiffness and mass matrices.
The eigenvalue sensitivity and eigenvector sensitivity are

A7) = {¢:i} ([4K] — 0 [AMD){ s}, (13a)
{41} = kil B (o} (13b)
where
i = —3{o} [AM] {0} (13¢)
and

_ {@k}T([K]j -} [M]j){(l)i}

ﬁik - CO,Z — (U}%

, k£ (13d)
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In deriving the sensitivity of mean square response, it is assumed that the white-noise
excitations on all degrees of freedom of the system are not correlated with each other, i.e.
[D] = diag(D;). Therefore, it follows that [®@]"[D][®] = [d,,] in equation (5) is expressed as

N
dys = Z Qi PisD;. (14)
i=1

Assume that the modal damping ration {.(r = 1,2, ..., n) does not change significantly in
between cycles. From equations (7a), (9) and (10), the sensitivity of mean square response is
as follows:

Case 1 corresponding to equation (9):

Oij = AO_%& = Z Z (A(Pircrs(pis + (PirACrs(Pis + (PircrsA(pis) (l =1,2, D= 1,2, ~~~7m)n
r=1s=1
(15a)
in which
drs rs ‘rs A 3 N A 3 r Adrs rs'rs
AC,, = T azlz (w)a)+ (w3 +n AT,
N0y 05\ 20, 20, UR/NONON
d. A d A
s STy | Bl (e — 1,0, omys = 1,2, ..,m), (15b)
r]r '/IS wr wS 7]" ’/IS wrws
N
Adrs = Z (q)irA('Dis + ('DisAgDir)Dl
i=1
n N N
= Z (ﬂsk Y 0uouD; + P Z(pis(Pile>
= = 1=1
= Z(ﬂsk k+ﬁrk sk) (r:192:-”:’1;5:1:2:-“9”)9 (ISC)
¢ e _ e
Aars A(G)) A(ws) (7—1,2,...,7’!,5—1,2,...,}’1), (15d)
2w, 2m,
Arrs = _Qrgs(zarsAars + 2ersAers) + grzs(zarsAars + 2brsAbrs)a (156)
My 2 2
Abrs = il r s )s 15
20, (o7) 20, ) (151)
Aty = 27 A(@3) — 52 A2, (15g)
2m, 2w
aps = Crwr + CSU)S, T = Qrs — &rs» 8rs = (a:s + brzs)_ la (15h)
Ors=(an+ €)™, by=10, + 1,05, €= 1,0, — 04 (151)
Case 2 corresponding to equation (10):
! nd,, " 3nd ((p )?
=/ 2 _ e rr\Wir, 2
O‘u O-Yi ;1()0" Cra)r rgl 4Cr r wr ’

\2 /N
n(%i( @A D > (i=1,2..,pj=12...m, (l6a)

d,, i (0i)*D; (r=1,2,....n). (16b)
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3.3. OPTIMALITY CRITERIA

The Lagrangian function for the multiple constraint problem of equation (11a)-(11b) is
given as

L=W Y i}~ (5})") (17)

i=1

where /; is the Lagrange multiplier for the ith constraint. Using an approach similar to that
in reference [28], the optimality criterion is

N
Aiaij

4 y

=Y Mo (j=12....m), (18)
i=1 Wi =1 Pj

where p; is the mass density, v; is the volume with w; = p;v; and s;; = o;;/v;. Therefore, the

sensitivity number for element removal for multiple dynamic response constraint problem is
defined as

M=

Vi=

% i=1,2,...,m), (19)

p
Vi= Z i
i=1
which implies that the sensitivity number for multiple dynamic response constraints is the
weighted sum of the sensitivity numbers corresponding to each constraint.
In topology optimization of static displacements, different schemes have been suggested
to determine the Lagrange multipliers [28, 297]. The way adopted here is the ratio formulae
given as

ij
wi

ar, \'"
)"f:<¢(aé)“> (i=12...p)\ (20)

where b is a step control parameter and ¢ = max;—; (o7 /(0%)") is a scaling factor, which is
introduced to keep constraints active.

3.4. EVOLUTIONARY OPTIMIZATION PROCEDURE

The evolutionary procedure for topology optimization of a structure subject to random
dynamic response constraints is summarized as follows:

Step 1: Define a ground structure (initial FEA model) for the structure.

Step 2: Analyze the structure for the given random load cases.

Step 3: Calculate the element sensitivity number y; by equation (19).

Step 4: Remove a number of elements that have the lowest sensitivity numbers.

Step 5: Repeat Steps 2-4 until one of the constrained random dynamic response reaches
its prescribed limit or the sensitivity numbers become uniform.

The number of elements to be removed at each iteration is prescribed by the element
removal ratio (ERR). It is defined by the ratio of the number of removed elements to the
total number of elements of the initial or the current FEA model. The values up to 10% for
ERR have been used by Chu et al. [28] for topology optimization with static displacement
constraints. The presence and absence of an element is described by non-zero and zero. An
element removed at the current structure is tagged 0 so that it will be ignored in the
subsequent finite element analysis. For finite analysis using four-node elements, it is noted
that in some iteration an element may be connected to the other elements only at one node.
As such an element does not have in-plane rotation stiffness corresponding to drilling
freedom and it can have free in-plane rotation, the stiffness matrix will become singular.



DYNAMIC RESPONSE CONSTRAINTS 183

A simple measure to overcome singularity of stiffness matrix is to introduce a check
procedure on the completion of element modification and remove the singular elements
accordingly.

Further, it is noted the square root of objective function (gy) is proportional to the
reciprocal of the design variables (plate thickness ¢) or its nth order, i.e., oy = ¢(1/t)" where
¢ is a constant. n is 1 for the plane stress case and 3 for plate bending case. A single scale
procedure is applicable. In doing so, the topology of a design remains unchanged but the
thickness is scaled so that the response of the concerned node is equal to the prescribed limit
(oy)". The weight of a design after scaling is called the objective weight. The ratio between
the objective weight of the current structure and that of the initial design is called weight
ratio. It is clear from this definition that the weight ratio of the initial design is 1 and
a topology of smaller weight ratio represents a better optimum solution.

4. EXAMPLES

In the following examples, the formulation of mean square dynamic responses and their
sensitivity numbers are calculated by using equations (7a)-(7d), (9) and (15a)—(151).

4.1. A BENDING PLATE STRUCTURE UNDER SINGLE LOAD AND ONE-POINT DYNAMIC
RESPONSE CONSTRAINT

Figure 1 shows an initial structural model and its loading conditions. The prescribed limit
of mean square dynamic response in the vertical direction of point 4 is 0-011 m?. The initial
mean square dynamic response at the same point is 0-0020 m? under the action of
autopower spectral D, = 1-0 N?/Hz. The Young’s modules E = 207 GPa, the Poisson ratio
v = 0-3, thickness t = 0-005 m and mass density p = 2700 kg/m> are assumed. The design
domain is divided into a mesh of 48 x 16, namely 768 four-node bending plate finite
elements and removal ratio 1% is used at each step.

Two cases are investigated. The number of truncated modes in the first case is 14 and the
number in the second case is 19. The evolutionary histories of the mean square dynamic
responses of the two cases are illustrated in Figure 2. It is seen that by slowly removing
elements with the smallest sensitivity number, the response is gradually increased. The
remaining elements represent the optimal topology as shown in Figures 3 and 4. It is seen
that results obtained by using different truncated mode numbers agree well with each other.
Also, the optimum topology in Figure 4(b) has a weight ratio of 0-4219, representing
a significant topology improvement over the initial design.

D, =10 N*/Hz

025m

0-25m
7 | L6m %

Figure 1. The structural model and loading case of a bending plate.
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Figure 2. Evolutionary histories of mean square dynamic responses at point 4 by using two different mode
numbers: (——) results obtained by using 14 modes; (—A—) result obtained by using 19 modes.

(a) (b)

Figure 3. Optimization of the bending plate model by using 14 modes: (a) topology at iteration 45, weight
ratio = 0-6276. ¢4 = 0-004741 m?; (b) optimum topology weight ratio = 0-4219. ¢34 = 0-01080 m>.

Figure 4. Optimization of the bending plate model by using 19 modes: (a) topology at iteration 45, weight
ratio = 0-6276. ¢4 = 0-004751 m?; (b) optimum topology weight ratio = 0-4219. ¢34 = 0-01087 m>.

4.2. BENDING PLATE WITH MULTIPLE RESPONSE REQUIREMENTS

Figure 5 shows the initial structural model and its loading conditions. It has the same
geometrical and material properties and finite element mesh as example 1. The autopower
spectral D4, Dj, and Dy of dynamic loads imposed at points A, D and E, are 1-0, 2-0 and
2:0 N?/Hz respectively. The corresponding limits of mean square dynamic responses
applied downward are 0-05, 0-018 and 0-018 m? respectively. Element removal ratio
ERR = 1% is used. The evolutionary histories of the mean square dynamic responses at the
three points are illustrated in Figure 6. Figure 7 gives the topologies with different weight
ratios.
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4 D, =10 N*/Hz
7 0-09375 f b
11667 m m C

D,=2-0 N*/Hz
- 16667 m A

-4 B

D, =20 N’/Hz
7 0-09375m f E
— |

1-6m

Figure 5. The initial structure model and loading case of a bending plate.
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Figure 6. Evolutionary history of mean square dynamic responses at points A, B and C: (——) mean square
response at point A; (—A—) mean square response at node C; (—ll—) mean square response at node B.

4.3. A PLATE UNDER PLANE STRESS CONDITION

Another example is a plate under the plane-stress condition fixed at the left side, as shown
in Figure 8. It has the same material properties as example 1. The initial design is divided
into a mesh of 48 x 30, namely 1440 four-node plane-stress finite elements. The thickness is
0-001 m and ERR = 0-8% is used. The limit of the mean square dynamic response at point
A is 0-05 mm? under the applied load of autopower spectral D, = 1-0 N?/Hz. Figure
9 shows the evolutionary history of the mean square dynamic response at point A, and
Figure 10 give the topologies. The optimum topology is shown in Figure 10(d), with a mean
square response 0-04971 mm? and a weight ratio 0-4556.

4.4. A PLATE STRUCTURE WITH A NON-SYMMETRIC APPLIED LOAD

The final example is a plate with a non-symmetric load. Figure 11 shows the structural
model and its loading conditions. It has the same geometrical, material properties and finite
element mesh case as example 3. The limit of mean square dynamic responses in the vertical
direction of point A is 0-05 mm?. The evolutionary history is shown in Figure 12. The
optimum topology is given in Figure 13 with a mean square dynamic response equal to
0-04911 mm?.
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Figure 7. Optimization of the bending plate model considering multiple dynamic response requirements: (a)
topology at iteration 20, weight ratio = 0-8438. ¢ = 0-01289, g3 = 0-004767 and 62 = 0-004767 m?; (b) topology
at iteration 40, weight ratio = 0:7292. ¢ = 0-01764, ¢4 = 0-006187 and ¢ = 0-006187 m?; (c) topology at iteration
80, weight ratio = 0-5208. ¢ = 003569, o3 = 0-01194 and ¢2 = 0-01194 m?; (d) optimum topology, weight
ratio = 0-4453. o3 = 004958, 6} = 0:01649 and ¢2 = 0-01649 m?.

A 0-1jm

D, =10 N*/Hz

SOANCUN DN NSAN LN N

[

A

016 >

Figure 8. The initial structure model and loading case of plane-stress plate.
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Figure 9. Evolutionary history of the mean square dynamic response at point A.

It is noted that the accuracy of sensitivity analysis using the modal truncation method
may depend on the numbers of involved modes. In the first example, it is seen that the
number of truncated modes does not have distinct effect on the optimum solution.
However, this point can be problem dependent and is currently under investigation. One
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Figure 10. Optimization of the plane-stress plate model under symmetric load: (a) topology at iteration 27,
weight ratio = 0-7875. ¢4 = 0-02357 mm?; (b) topology at iteration 47, weight ratio = 0:6569. ¢ = 0-02908 mm?;
(c) topology at iteration 70, weight ratio =0-5458. ¢% = 003963 mm?; (d) optimum topology, weight
ratio = 0-4556. ¢4 = 0-04971 mm?.

AN

0-1m

ANAAAMNAM AN

l«———0:16m D, = 10 N’/ Hz —»|
A 4

Figure 11. The initial structure model and loading case of a plane-stress plate under non-symmetric load.

preliminary result is that the effect of the truncated mode can be negligible if the mode is
truncated in between two well-spaced frequencies. Also, the study in this paper only deals
with distinct eigenvalue problems. Repeated or closed eigenvalues have been addressed in
ESO for single natural frequency optimization [1] using a kind of average technique. It is
expected that this technique can be equally used for response optimization as studied in this
paper with reasonable accuracy. This topic is also under investigation at present.
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Y <

[=]

X
T

@
=
=

0 20 40 60 80
Number of iterations

Figure 12. Evolutionary history of mean square dynamic responses at point A.

(c) (d)

Figure 13. Optimization of the plane-stress plate model under non-symmetric load: (a) topology at iteration 16,
weight ratio = 0-8375. ¢4 = 0-02094 mm?; (b) topology at iteration 34, weight ratio = 0-6875. ¢4 = 0-03122 mm?;
(c) topology at iteration 51, weight ratio =0-5771. ¢% = 003998 mm?; (d) optimum topology, weight
ratio = 0-4875. ¢4 = 004911 mm?.

5. CONCLUSION

The ESO method is applied for the optimization of mean square dynamic response.
Aspects of the response description, sensitivity analysis and optimality criteria are
presented. The ESO procedure is proposed and tested on optimization of plate structures.
The results of topology and dynamic response demonstrate the validity and effectiveness of
the proposed method.
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